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LETTER TO THE EDITOR

Random sequential adsorption: line segments on the
square lattice

S S Manna and N M Svrakié

Hochstleistungsrechenzentrum der Forschungszentrum, Postfach 1913, D-5170 Julich |,
Federal Republic of Germany

Recewved 22 Apnl 1991

Abstract. We study kinetics of the single-layer random sequeniial adsorpuon of hoe
segments of Gxed lwngth on the sguare latticz by a Monte Carlo simulahon. The area
covered by the hne segments grows with time and finally reaches a jamming limit when
no more adsorption is possible. The jammmg coverage depends on the ssgment length and
1ts vanation 1s studied At the late stage, approach of the coverage to the Jammung limit 1s
asymptotically exponential, with a rate found to be mdependent of the segment length.
Based on our Monte Carlo data, an ¢ vact expression for the late-stage deposition Kinetics
15 conjectured,

Random sequential adsorption {rRsa}, has been the subject of much recent experimental
and theoretical investigation. Objects of finite size are randomly deposited {adsorbed)
on an initially empty substraie so that no two objects overlap. The guantity of interest
is the fraction of the total area 8(t}) in time 4, covered by the depositing particles. Due
to the blocking of the area by the already randomly adsorbed particles, the limiting
(‘jamming’) coverage, 0(c0), is less than the close packing. The emergence of this
jammed state is influenced by the infinite memory effects. Consequently, its formation
cannot be described by mean-field theory, except for very early times, when 8(s)Ct

Experimental studies [1-4] include, e.g., adhesion of colloidal particles [3] and
proteins [2] on homoegencous substrates, with relaxation times much longer than the
formation time of deposits.

Theoretical studies [ 5-17] of rsa include series expansions [ 8, 107, numerical Monte
Carlo (mc) simutations [9, 14-16], and some analytical results [17], mostly for one-
dimensional systems. In such studies, it was shown that the precise form of the long-time
behavicur of (1) depends on the shape and orientational freedom of the adsorbing
particles. Earlier studies have focused on continuum deposition models for which a
power-law behaviour of the late-stage deposition [17]

(1) = 8(x) _Ew )

generally holds. In most cases the logarithmic facior is absent (i.e. ¢=0), while p is
found to depend on spatial dimensionality d. In one dimension analytic results [13]
yield p=1 and g=0. For higher dimensions, analytical arguments and numerical
conjectures give p=1/d and g =0 for deposition of spherical objecis in d dimensions.
Studies of deposition of ron-spherical objects (eilipses and line segments) have shown
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[£5, 16] that in this case the power law behaviour (1) still holds, but that the value of
p is modified. Specifically, for the adsorption of the ellipses on the plane it was found
that p =3. Also, the jamming coverage, #{c0), for the ellipses depends on their aspect
ratio.

The problem of rsA of lines on continuum is studied by Sherwood [15] and Ziff
and Vigil [16]. Here lines are of zero thickness, and the only restriction is that no two
lines can intersect. At very easly times, depasited lines do not feel the presence of
others and are adsorbed in arbitrary orientations. Later, these lines have to be deposited
more and more parallel to the already adsorbed ones in order to avoid intersection.
After a long time the resulting structure consists of regions with densely packed
approximately parallel lines and some empty zones where no line can be placed in
any orientation. The typical size of such domains is comparable to the length of the
line segments deposited (see [15, 16] for beautiful pictures of such configurations).
For objects of zero area one cannot reach the jamming limit. From numerical simulation
and some general arguments Sherwood claimed that the number of line segments n
adsorbed in time ¢ grows as n~ ¢® where z ~1 [15]. Later, more extensive numerical
simulation resalts suggested that z is actvally around 038 [16] Ziff
and Vigil also claimed that the late stage configuration has a fractal dimension
around 1.8 [16].

Studies of ®sA on the lattices have been initiated quite recently. In these models,
the adsorbing objects considered were squares [13] or oriented rectangles [14], or their
appropriate higher-dimensional analogues. Here, the late stage jamming coverage is
approached exponentially {13, 14], i.e.,

0,(1) = 6,(00)— A e/, (2)

In the present work we study a single-layer random sequential adsorption of line
segments on the square lattice by a Monte Carlo simulation. The lengths of the line
segments are always integral muitiples of the lattice unit, and the lines can be placed
along the lattice axes only. The orientation of the adsorbing line is randomly chosen
at each deposition attempt. The Monte Carlo procedure goes as follows: we take the
square lattice of the size L and a line segment of length [ and randomly select a lattice
site. We fix one end of the line at this site and try to place the segment 1n any of the
four possible directions. If the chosen site is already occupied, the attempt is abandoned,
and a new site 1s selected. If the site is unoccupied, we randomly pick one of the four
possible orientations and search whether all successive [ sites in that direction are
unoccupied. If so, we occupy these I sites and deposit the segment. If the attempt fails
we choose randomly another direction and so on until all four possibilities are
exhausted. If the segment cannot be placed in any of the four directions, we denote
this site as inaccessible. In the course of simulation we record the number of all
inaccessible sites in the lattice. These include the occupied sites and the sites which
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are unoccupied but cannet be one end of the line segment. Further in the simulaiton
we do not attempt deposition if an inaccessible site is selected. In difference with the
rsA of lines in continuum, the jamming limit can be reached cxactly in our case when
the number of inaccessible sites becomes equal to the total number of sites in the
lattice. Periodic boundary conditions were used in both directions. The time is counted
by the number of attempts to select a lattice site and is scaled by the total number of
lattice sites L%

A typical jamming configutation obtained in the simulation is shown in figure 1.
In this figure, line segments of length I =35 are adsorbed on a 100 x 100 lattice. Several
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Figure £. A typical jamming coafiguranion for hing segments of tength /=35 on a lattice of
size L= 1060 having a total of 1272 hines

interesting features are immediately apparent. First, there are ‘voids’ (connected clusters
of imaccessible sites} of sizes ranging from a single site to the length of the lines
deposited. Secondly, deposited lines tend to align parallel with one another and form
domains. These domains vary in size, and some can be quite long and chain-like. This
is in sharp contrast with random deposition of lines in continuum where long domains
are never observed. The difference is due to the fact that in our case only two possible
orientations along the lattices axes are allowed.

First we study how jamming coverage of line segment of certain length I depends
on the lattice size L. We simulate 50 independent jamming configurations for lines of
fengths 1, 2, 4, 8, 16 and 32 on two lattice sizes L =128 and 256. We find that the
difference of the average jamming coverages for the two lattices differs by a maxinaum
of 0.3% for these line lengths. In latter simulations on bigger laftices we keep the line
fengths != L/8. This is done to avoid the finite-size effects, which become important
when !« L. {These effects are generally weak, but must be carefully dealt with when
! and L are comparable.)

The value of the jamming coverage depends on the length [ of the segments
deposited. We simuiated the lattice size L = 1024 for lines of lengths 1, 2, 4, 8, 16, 32,
64 and 128. We used Sun4 workstations, one for cach line segment, runining for some
days. Averaging over arcund 1300 independent jamming configurations for each line
segment, we were able to reduce the error bars below 1 in the fourth distinct place.
Since we do not know the precise form of variation of #(c0) on I, different functional
forms were tried. In figure 2 the jamming coverage 8,{c0) is plotied against 1/In [ It
is linear for large values of ! and approaches a definitive value, 8,{c0)=0.583:0.010.
The slope of the line is 8.32:+0.02. Thus, for large /, the jamming depsity has a form

00 = 0@+ 10+, (> 1), @)

Turning back to time dependence, we expect that the late-stage coverage will have
exponential behaviour, as in (2), where we have allowed for the I-dependence of the
constants A; and the rates o,. The plot of In[8/(c0) — 6,(#)] against ¢, for longer times,
should then give the straight line behaviour for the fixed segment lengths L This plot
is shown in figure 3, for =1, 2, 4, 8, 16, 32, 64, 128, with the topmost line corresponding
to {=1. Initially, the curves are not linear, but as the coverage builds up, the kinear
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Figure 2. The average Jamming coverage £(co) for hines of length ! plotted with respect to
1/In I Extrapolation to {-» o0 gives #,{c0) =0383£0.010
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Figure 3. The approacn of the average coverage &,{1
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behaviour is clearly observed. The avarages are made over 30 runs, on the lattices of
the size 1024 x 1024, The noisy curves for / =64 and 128 reflect that averaging over 30
configurations was not sufficient to obtain 8(r) for large values of £. Within the limits
of accuracy, the late stage dcposition lines (intermediate regime of graphs) are paraliel,
suggesting that o is independent of [, i.e , the rate of approach to the jamming coverage
1s the same irrespactive of the segment lengths. From the siopes of these fines we get
o= o =0.53%0.05.

The behaviour of A, for different l-values is obtained from the intercepts in figure
3. Since we have taken the segment lengths to be /=2", with m=0,1,2,...,7, and
since the lines in figure 3 are nearly equidistant, it is natural to assume that A, =¢- 1'%,
where o is the exponeni to be determtined, while ¢ is some constant. For the lengths
we use, A; = ¢+ 27™. The plot of In(A;) against m is shown in figure 4 and gives nearly
a straight line. From the ° st squares fit we obtain @ =1.1£0.1, and ¢=0.55+0.10.
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Figure 4. The logarithm of the amplitude A, =¢ ™ for difierent ling lepgths {=2" 15
plotted against m A straipght hine fit of the daza gives a slope w = 1 1 and the constent ¢ = 0 55

It seems that the exact form for the approach to the late-stage jamming coverage
1
91(5)=91(°°)_ZBX?{“20 {4)

may be conjectured.

In summary, we have performed a numerical Monte Carlo simulation of single-layer
rsA of line segmenis on the square lattice. The jamming coverage 6,(c0) 15 calcutated
for various line lengths and extrapolated to obtain 8,.(0). The exponential approach

B R IR P [P e ahéninad el tha mamotomis B
[ it uu.' jamiming il i5 Gotdineq, and tne constants ur\w;, I'l] alag o= 4oy, arc

calculated. Our data suggest that the exact form of (2} might be conjectured, as given
by (4).

All computations were performed using around 10 hours of cpu time on an 1IBM
3090 and around 2 weeks of cpu time on Sund workstations.

We thank H J Herrmann, J Kertész, V Privinan and M Henkel for discussions and the
critical reading of the manuscript, and M Konstantinovié for the explanation of the
experimental aspects of rsa

References

11 Fadar ¥ and flmuar T 1800 F allad Tur Ca T 14
L4} Feder ] and Guaver I 1980 7 Collod Tnt Sc 78 144

2] Onoda G Y and Linigier E G 1986 Phys Rev A 33 715

[3] Kallay N, Tomi¢ M, Bidkup B, Kunjaité | and Matyevié E 1987 Cofloids Surf 29 183
[4] Konstantinovié M and Patel R 1991 Preprini

{5] Flory P J 1939 1. Am. Chem. Soc. 61 1518

[6] Widom B 1966 L. Chem Phys 44 3838

{71 Pomear Y 1980 J Phys. A: Math Gen 13 L193

[8] Evans J and Nord R S 1985 J Stat Phys. 38 681

50? Nakamnra M 1987 Phus Rep A 25 7184

[lﬂ] Schaaf P, Talbot J, Rabeony H M and Resss H 1988 J Phys Cherr 92 4826
{111 vigil R D and Zuff R M 19890 J Chem Phys 91 2599



L676 Letter to the Editor

{12} Schaal P and Talbol 5 1989 Phys Rev Lent 62175

[13] Bastelt M C and Prnvman V 1990 J Chem. Phys 93 6820

{14] Nielaba P, Privman V and Wang J-3 1990 J Phys A Math Gen 23 L1187, 1991 Phys Rev B 43 3366
[15] Sherwood § D 1990 J. Phys A Math Gen 23 2827

{16] Z1fi R M and Vigll R D 1990 J Phys A Math Gen 23 5103

[17] Swendsen R 1981 Phys Rev A 24 504



