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LElTER TO THE EDITOR 

Random sequential adsorption: line segments on the 
square lattice 

S S Manna and N M Svrakit 
Hochstleistungrreehenlentrum der Forsehungrzenlrum, Portfach 1913, D-5170 Jukh I,  
Federal Republic of Germmy 

Received 22 Apnl 1991 

Abstract. We study kinetics of the rmgle-layer random sequenrisl adsorption of lint 
segments of k e d  kn5h on the square IatIjcc by a Monte Carlo srmulatton. The area 
covered b) the line segments grows with time and finally reacher a jamming limit when 
no more adsorption is possible. The jamming coverage depends on the segment length and 
11s vanation IS studted At the late stage, approach of the coverage to the jamming limit IS 
arymptotieally exponential, with a rate found to be independent of the segment length. 
Based on our Monte Carlo data, an ("act expression for the late-stage deposition kinettcs 
15 conjectured. 

Random sequential adsorption (RSA), has been the subject of much recent experimental 
and theoretical investigation. Objects of fiGte size are randomly deposited (adsorbed) 
on an initially empty substrate so that no two objects overlap. The Quantity of interest 
is the fraction of the total area B(f) in time i, covered by the depositing particles. Due 
to the blocking of the area by the already randomly adsorbed particles, the limiting 
(3amming') coverage, ~ ( c o ) ,  is less than the close packing. The emergence of this 
jammed state is iduenced by the infiuite memory effects. Consequently, its formation 
cannot he described by mean-field theory, except for very early times, when 6 ( t ) a f .  

Experimental studies 11-41 include, e.g., adhesion of colloidal particles 131 and 
proteins [2] on homogeneous substrates, with relaxation times much longer than the 
formation time of deposits. 

Theoretical studies [S-171 of RSA include series expansions IS, l@J, numerical Monte 
Carlo (Mc) simulations [9,14-16], and some analytical results 1171, mostly for one- 
dimensional systems. In such studies, it was shown that the precise form of the long-time 
behaviour of b'(r) depends on the shape and orientational freedom of the adsorbing 
particles. Earlier studies have focused on continuum deposition models for which a 
power-law behaviour of the late-stage deposition 1171 

(1) 
constant x (In r)'l 

I P  
e ( r )  = e(m) -- 

generally holds. In most cases the logarithmic factor is absent (i.e. q =O), while p is 
found to depend on spatial dimensionality d In one dimension analytic results I131 
yield p = l  and q = O .  For higher dimensions, analytical arguments and numerical 
conjectures give p = l i d  and q =O for deposition of spherical objects in d dimensions. 
Studies of deposition of non-sphericaf objects (eilipses and line segments) have shown 
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[IS. 161 that in this case the power law behaviour (1 )  still holds, but that the value of 
p is modified. Specifically, for the adsorption of the ellipses on the plane it was found 
that p =$. Also, the jamming coverage, O(m), for the ellipses depends on their aspect 
ratio. 

The problem of RSA of lines on continuum is studied by Sherwood [I51 and Ziff 
and Vigil [16]. Here lines are of zero thickness, and the only restriction is that no two 
lines can intersect. At very ea-!y times, deposited !ines do no! fee! !he presence cf 
others and are adsorbed in arbitrary orientations. Later, these lines have to be deposited 
more and more parallel to the already adsorbed ones in order to avoid intersection. 
After a long time the resulting structure consists of regions with densely packed 
approximately parallel lines and some empty zones where no line can be placed in 
any orientation. The typical sue of such domains is comparable to the length of the 
line segments deposited (see 115,161 for beautiful pictures of such configurations). 
For objects of zero area one cannot reach the jamming k i t .  From numerical simulation 
and some general arguments Sherwood claimed that the number of line segments n 
adsorbed in time f grows as n--tT where z - $  [15]. Later, more extensive numencal 
simulation results suggested that z is actually around 0.38 [16]. Ziff 
and Vigil also claimed that the late stage configuration has a fractal dimension 
around 1.8 1161. 

Studies of RSA on the lattices have heen initiated quite recefitly. In these models, 
the adsorbing objects considered were squares [I31 or oriented rectangles [14], or their 
appropriate higher-dimensional analogues. Here, the late stage jamming coverage is 
approached exponentially [13, 141, i.e., 

& ( I ) =  O,(m)-A, e-''=,. (2) 

In the present work we study a single-layer random sequential adsorption of line 
segments on the square lattice by a Monte Carlo simulation. The lengths of the line 
segments are always integral multiples of the lattice unit, and the lines can be placed 
along the lattice axes only. The orientation of the adsorbing line is randomly chosen 
at each deposition attempt. The Monte Carlo procedure goes as follows: we take the 
square lattice of the size Land  a line segment of length I, and randomly select a lattice 
site. We fix one end of the line ai this site and try to place the segment In any of the 
four possible direaons.  Ifthe chosen site is already occupied, the attempt is abandoned, 
and a new site IS selected. If the site is unoccupied, we randomly pick one of the four 
possible orientations and search whether all successive I sites in that direction are 
unoccupied. If so, we occupy these 1 sites and deposit the segment. If the attempt fails 
we choose randomly another direction and so on until all four possibilities are 
exhausted. If the segment cannot be placed in any of the four directions, we denote 
this site as inaccessible. In the course of simulation we record the number of all 
inaccessible sites in the lattice. These include the occupied sites and the sites which 
are unoccupied but cannot be one end of the iine segment Further in ihe smniuiatioii 
we do not attempt deposition if an inaccessible site is selected. In difference with the 
RSA of lilies in continuum, the jamming limit can be reached cxactly L our case when 
the number of inaccessible sites becomes equal to the total number of sites in the 
lattice. Periodic boundary conditions were used in both directions. The time is counted 
by the number of attempts to select a lattice site and is scaled by the total n w h e r  of 
lattice sites L*. 

A typical jamming configuration obtained in the simulation is shown in figure 1. 
!n this figure, line segments of length I = 5 are adsorbed on a 100 x 100 lattice. Several 
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~i~~~~ I. A typcai jammmg configurmon lor h e  segmenls of length I =  s on a lattice of 
size L =  100 having a total of 1272 hnes 

interesting features are immediately apparent. First, there are ‘voids’ (connected clusters 
o i  inaccessible sites) of sizes ranging from a single site to the length of the lines 
deposited. Secondly, deposited lines tend to align parallel with one another and form 
domains. These domains vary in size, and some can be quite long and chain-like. This 
is in sharp contrast with random deposition of lines in continuum where long domains 
are never observed. The difference is due to the fact that in our case only two possible 
orientations along the lattices axes are allowed. 

First we study how jamming coverage of line segment of certain length I depends 
on the lattice sue L. We simulate 50 independent jamming configuratiovs for lines of 
lengths 1, 2, 4, 8, 16 and 32 on two lattice sizes L =  128 and 256. We find that the 
difference of the average jamming coverages for the two lattices differs by a maximum 
of 0.3% for these line lengths. In latter simulations on bigger lattices we keep the line 
lengths I s  LIS. This is done to avoid the finite-size effects, which become important 
when l a  L. (These effects are generally weak, hut must be carefully dealt with when 
I and L are comparable.) 

The value of the jamming coverage depends on the length I of the segments 
deposited. We simulated the lattice size L = 1024 for lines of lengths 1,2,4, 8, 16, 32, 
64 and 128. We used Sun4 workstations, one for each line segment, running for some 
days. Averaging over around 1300 independent jamming conEprations for each line 
segment, we were able to reduce the error hars helow 1 in the fourth distinct place. 
Since we do not know the precise form of variation of 8(m) on I, different functional 
forms were tried. In figure 2 the jamming coverage &(m) is plotted against l/ln 1 It 
is linear for large values of I and approaches a definitive value, 8,(m) =OS83 +0.010. 
The slope of the line is 0.32+0.02. Thus, for large i, the jamming density has a form 

(3) 

Tuming back to time dependene, we expect that the late-stage coverage will have 
exponential behaviour, as in (21, where we have allowed for the /-dependence of the 
constants A, and the rates U,. The plot of In[B,(m)- 8,(t)J against t, for longer times, 
should then give the straight line behaviour for the fixed segment lengths L This plot 
is shown in figure 3, for 1 = 1,2,4,8,16,32,64,128, with the topmost line corresponding 
to I =  1. Initially, the curves are not linear, but as the Coverage builds up, the linear 

0 32 
B,(m)=B,(m)+--+ ... (/.>I). In r 
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Figure 2. The average lamming coverage B(m) for lines of length I plotted with r ~ p e c l  10 
I / l n I  Extrapolation to I+mgives 8,(m)=OSS3*O.OlO 

behaviour is clearly observed. The averages are made over 30 NnS, on the lattices of 
the size 1024 x 1024. The noisy curves for I = 64 and 128 reRect that averaging over 30 
configurations was not sufficient to obtain 6(1) for large values of 1. Within the limits 
of accuracy, the late stage dtposition lines (intermediate regime of graphs) are parallel, 
suggesting that oI is independent of I, i.e. the rate of approach to the jamming coverage 
IS the same irre+Zctive of the segment lengths. From the slopes of these lines we get 
u,=u=0.53+0.05. 

The behaviour of A, for different I-values is obtained from the intercepts in figure 
3. Since we have taken the segment leneths to be I=Zm, with m =0,1 ,2 , .  . . ,7, and 
since the lines in figure 3 are nearly equidistant, it is natural to assume that A, = C '  

where o is the exponent io be determined, wiiiie c is some ionsiaiii. For the !efig$:hS 
we use, AI = c .2-"". The plot of In(A,) against m is s h w n  in figure 4 and gives nearly 
a straight line. From the ' 1st squares fit we obtain w=1.1+0.1, and c30.55*0.10. 
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Figure 4. The loganthm of the amplitude A , = <  I P  fur different lint Img!hs I =  2''' 4s 
plonedagainrtm As[r*ightlinelitofthedaiagireraslopew ~ 1 1  .+ndthewnr!anlc=O88 

It seems that the exact form for the approach to the late-stage jamming coverage 

(4) 
! 

21 
s,(r) = O,(m)--er-g-2t) 

may he conjectured. 
In summary, we have performed a numerical Monte Carlo simulation of single-layer 

RSA of line segments on the square lattice. The jamming coverage &(m) IS calculated 
for various line lengths and extrapolated to obtain BJm). The exponential approach 
::: :a :he jm=kg E -  i s  ahtalned, and the cGas:an:s $,:a), A,, and G = G,, are 
calculated. Our data suggest that the exact form of (2) might he conjectured, as given 
by (4). 

All wmputations were performed using around 10 hours of CPU time on an IBM 
3090 and around 2 weeks of CPU time on Sun4 workstations. 

We thank H J Herrmann, J KertBsz, V Privman and M Henkel for discussions and the 
critical reading of the manuscript, and M KonstantinoviC for the explanatlon of the 
experiinental aspects of RSA 
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